

IPS®SYSTEMS Integration Strategy General Document

Table of Contents

1	Introduct	ion	1
2	IPS [®] SYSTE	EMS Integration Platform	1
	2.1	IPS [®] SmartGridDI	
	2.2	IPS [®] WEB Services	3
	2.2.1	IPS OData API usage	3
3	Interface	Request (IPS IR)	8
	3.1	SAP-IPS example	9
	3.2	Historian – IPS example	13
	3.3	Oil Laboratory – IPS example	13
4	IPS [®] ENER	GY System Integration - Scenarios	14
List	of Figures		i
List	of Tables		i
Apı	pendix		A
		Δ)	

1 Introduction

This document describes basic rules, principles and guidelines for integration between IPS®SYSTEMS and other external systems. It does not describe in detail all interfacing scenarios, mandatory technical requirements neither design specification.

It should be taken into consideration that integration architecture, use cases and interfacing requirements can vary. That's why the purpose of this documents is only to give formal introduction and to explain integration concept on high level.

2 IPS®SYSTEMS Integration Platform

The following figure represents high-level architecture of IPS proposed solution integrated within clients existing infrastructure. Legend is given on the top of the picture.

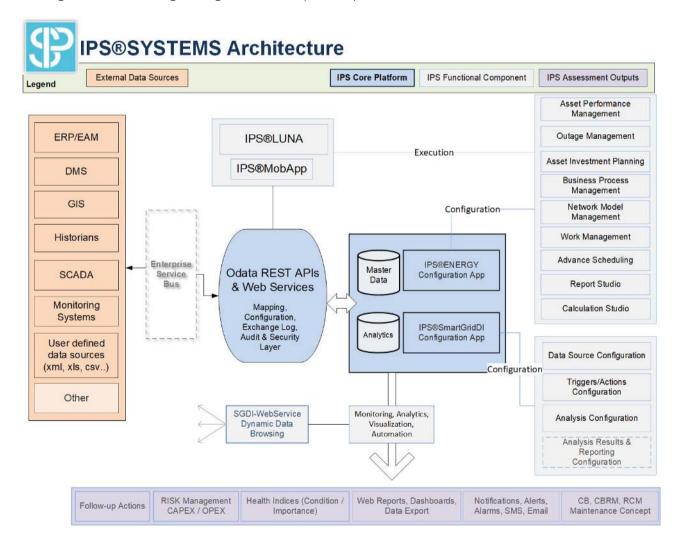


Figure 1: IPS®SYSTEMS Solution Architecture

IPS®SYSTEMS Solution Architecture is designed with clear separation between Database Server (central data repository) and Application Server where service-based components are hosted.

Application Server hosts web and windows services and critical application business logic components, while Database Server only stores data used by the system.

As well all automatic condition based and/or time based (background) processing is being done on the application server where smart IPS services are installed.

NOTE: Detail specification for implementation of all required requirements, like interfacing rules and mapping, analytics configurations, data inputs etc., are subject of separate detailed design document.

IPS data models are predefined per asset group (transformer, breaker, protection, linear assets), location type and also data input types (test results, monitoring results, inspections etc.), however, at the same time, the data store models are very flexible and can be easily adjusted or expanded to fit specific requirements.

IPS supports audit of all changes, data quality analysis, conditional notifications and alerts for incoming/outgoing data, statistics etc. and has successful implementation of interfaces with near real time data, monitoring data, test results, ERP systems (SAP/Maximo/Ventyx...), big data systems, OSI Soft, CAPE, PSSE.

IPS strategy for integration with real-time systems - IPS never connects directly to devices but always imports data from other (centralized) systems that are actually data concentrators, monitoring systems or from Historians or from Big Data Lake (e.g., Hadoop Cloudera) for our analysis. However, it can be one or more systems such as these that store different values relevant for analysis in IPS.

Modbus and IEC 61850 are NOT supported - IPS does not support direct connection to specific devices. Modbus and similar protocols are not an option for <u>direct interfacing</u> with IPS.

IPS®SYSTEMS integration platform consists of:

- IPS®SmartGridDL and
- » IPS®WEB Services

2.1 IPS®SmartGridDI

IPS®SmartGridDI supports:

- Data (read/import) pull from external systems
 IPS®SmartGridDI can monitor data changes in external systems, monitor databases, files, web services etc.
- Data (export) push to external systems

IPS®SmartGridDI can push data from its own data store to external sources on schedule or condition basis. Every external source (data connection) from/to which IPS is reading or sending information to is separately licensed.

With IPS Web API it is possible to exchange data only one unidirectional way, from External System (source) to IPS®SYSTEMS (target), whereas, IPS®SmartGridDI is required to enable bidirectional data exchange.

If one data source is used to exchange both via IPS Web API and IPS®SmartGridDI, then this is treated as a single Client License.

2.2 IPS®WEB Services

IPS WEB Services are based on OData RESTful API, and offer capabilities for:

› IPS database data browsing

In this way any information from IPS®SYSTEMS database can be read by third party systems.

IPS database data storing

In this way any information triggered by third party systems can be stored in IPS.

IPS is licensing this type of interface per IPS Web API (client) consumer. For example, if IPS is required to feed data from 3 different data sources (SAP, SCADA and GIS) then this would be 3 different client (license) subscribers.

2.2.1 IPS OData API usage

Below is given information about IPS OData API usage.

For testing purposes use LINQPad, Google Postman, Visual Studio or any other tool which can initiate http web request to OData service.

OData protocol defines one end point for exposing a single entity model that is serving. That endpoint is <serviceRoot>/\$metadata, and the HTTP GET request on that endpoint is responding with CSDL document (Common Schema Definition Language) confirmative to the specification given at:

http://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/odata-csdl-xml-v4.01.html.

Afore mentioned \$metadata CSDL document should explain IPS®ENERGY OData Web API model. This in turn means that any running instance of our service is able to describe it self (its entity model) via simple HTTP GET request.

On the following link is IPS document:

IpsEnergyOdataWebAPI metadata SCDL.xml

All the information needed for generating model in any programming/scripting language are present in that XML.

One of the examples of OData clients able to create entity tree out of such metadata documentation is popular (and free) tool:

LINQPad (https://www.lingpad.net/).

As an example, on the following figure is given LINQPad 5 screenshot from IPS test environment:

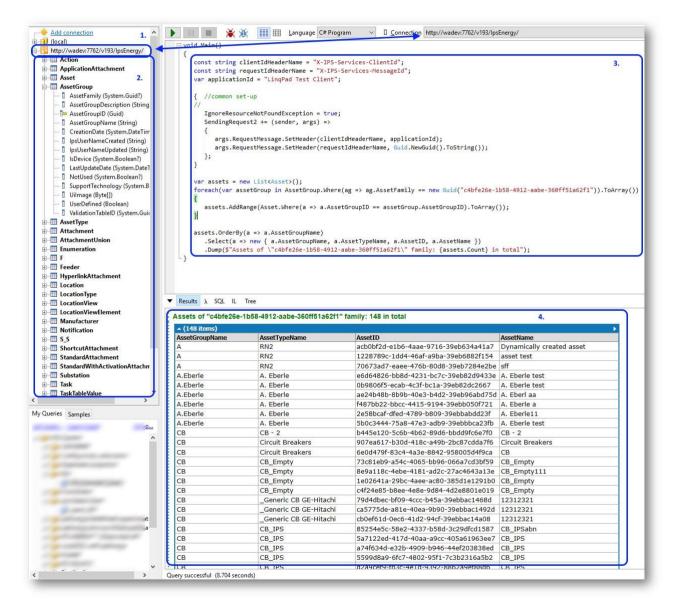


Figure 2: LINQPad

Marked regions are showing:

1. The URL of the service endpoint. This is the only configuration needed for this query to work (and classes to be generated).

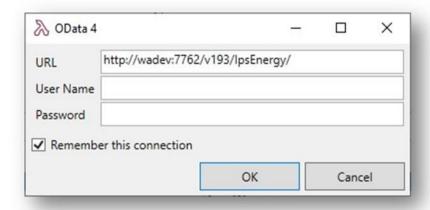


Figure 3: URL of the service endpoint

- 2. Auto generated classes from \$metadata document.
- 3. The C# code example.
- 4. Result set (displayed by LINQPad unique feature Dump ()).

In other languages there are similar tools. And for Visual studio there are plug-ins for proxy class code generation (VB or C#) from metadata. All exposed methods will also be available in the generated code. Like ExecuteAllUnexecutedTasks:

```
WorkOrder notExecutedWorkOrder = WorkOrder.First(w => w.DateExecuted == null);
notExecutedWorkOrder.ExecuteAllUnexecutedTasks(DateTimeOffset.UtcNow, "user name", true, false);
```

Figure 4: Generated code for ExecuteAllUnexecutedTasks

Before starting to write code it necessary to understand the mapping between IPS OData attributes and IPS®ENERGY Database schema. For that purpose, relevant is the documentation about IPS®ENERGY Database Model that you can find on the following link:

IPS®ENERGY Database Model

Information regarding IPS OData attributes is available in the *IpsEnergyServices_REST* database that is part of IPS delivery.

© IPS-Company Group 5/18

More specifically, following query will return all the mappings between the OData model and IPS®ENERGY Database:

SELECT

```
MessageTable as Entity,
Field as Propery,
FieldValueType as Type,
FieldEnumTypeName as EnumerationName,

IpsEnergyTable as DatabaseTable,
IpsEnergyColumn as DatabaseColumn

FROM [DataExchangeMappingProperties]

WHERE Disabled = 0 AND ApiVersion = 193

ORDER BY TableType, MessageTable, Field
```


The result of the query:

	Entity	Propery	Type	Enumeration Name	DatabaseTable	DatabaseColumn
1	Action	ActionClass	enum_int	Action TemplClass	MntAction	TemplClass
2	Action	ActionGroupID	uniqueidentifier	NULL	MntAction	MntActionGroupID
3	Action	ActionGroupItemIndex	int	NULL	MntAction	ItemIdxActionGroup
4	Action	ActionID	uniqueidentifier	NULL	MntAction	MntActionId
5	Action	ActionName	nvarchar	NULL	MntAction	Name
6	Action	ActionPriority	enum_int	Action Templ Priority	MntAction	TemplPriority
7	Action	Action Short Name	nvarchar	NULL	MntAction	TemplShortName
8	Action	Action Template ID	uniqueidentifier	NULL	MntAction	Mnt Templ Action Id
9	Action	ActionType	enum_int	Action Templ Type	MntAction	TemplType
10	Action	Assessment	enum_int	Assessment Status	MntAction	Assessment
11	Action	AssetID	uniqueidentifier	NULL	MntAction	AssetId
12	Action	Comment	nvarchar	NULL	Mnt Action	Comment
13	Action	DateCreated	datetime	NULL	MntAction	Created
14	Action	DateExecuted	datetime	NULL	MntAction	Execute Time
15	Action	DeadlineDate	datetime	NULL	MntAction	DeadlineTime
16	Action	Execution Exclusive	bit	NULL	MntAction	Execution Exclusive
17	Action	ExternalAssetID	nvarchar	NULL		
18	Action	ExternalID	nvarchar	NULL	MntAction	External Work Order Number
19	Action	ExternalLocationID	nvarchar	NULL		
20	Action	IpsUserNameCreated	nvarchar	NULL	Mnt Action	lpsUserNameCreated
21	Action	lpsUserNameExecuted	nvarchar	NULL	MntAction	IPSUser

Figure 5: Mappings between the OData model and IPS®ENERGY Database

3 Interface Request (IPS IR)

IPS IR (Interface Request) is unidirectional data exchange for one data object from one system to another.

There are 3 different options for IR implementation:

- > Standard integration (most common) IPS or IPS partner configure only IPS®SYSTEMS components: IPS®ENERGY, IPS®SmartGridDI and IPS®WEB Services.
- > End to end integration IPS or IPS partner configure both IPS®SYSTEMS and External System integration components
- Install only / own integration in this case IPS or IPS partner provides only software package required for integration

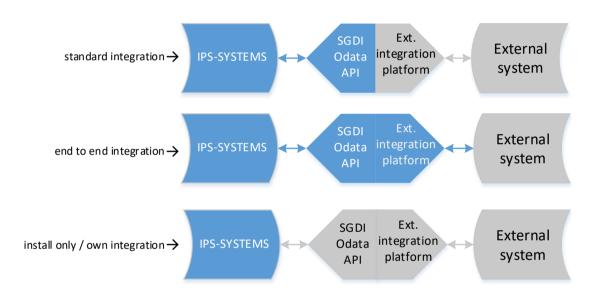


Figure 6: Three options for IR implementation

The number of interface requests (IRs), data objects, the types and technology are being defined in project design phase. In below chapter are given examples.

3.1 SAP-IPS example

In the example list given below are shown a couple of different interfaces and different possibilities of integrating. All the interface requests are described from both sides: source (outbound) and target (inbound).

> Equipment/Assets, Locations, and Work Order data objects and measurement documents are synced unidirectional from SAP to IPS.

Interface request 1: Sending list of newly created/updated/deleted Equipment/Assets

SAP -> IPS, using FTP as a middleware

Interface Request #	From (source system)	To (target system)	Data object	Туре	Technology	Description
1	SAP ERP	FTP Server	Equipment	Outbound	SAP ABAP	Custom ABAP development for collecting and exporting corresponding SAP equipment data, creating a CSV file and placing it on the predefined location on the FTP
	FTP Server	IPS	Asset	Inbound	SGDI/IPS Web Services (OData WebAPIs)	SGDI trigger which is checking the FTP location, reading the CSV file, and calling the appropriate IPS OData API for create/delete/update of an asset

Table 1: SAP-IPS Interface Request -Example 1

ABAP (Advanced Business Application Programming) - SAP's proprietary programming language SGDI - IPS®SmartGridDI

Interface request 2: Sending list of newly created/updated/deleted functional locations

SAP -> IPS, using FTP as a middleware

Interface Request #	From (source system)	To (target system)	Data object	Туре	Technology	Description
2	SAP ERP	FTP Server	Location	Outbound	SAP ABAP	Custom ABAP development for collecting and exporting corresponding location data, creating a CSV file and placing it on the predefined location on the FTP
2	FTP Server	IPS	Location	Inbound	SGDI/IPS Web Services (OData WebAPIs)	SGDI trigger which is checking the FTP location, reading the CSV file, and calling the appropriate IPS OData API for create/delete/update of locations or SQL stored procedure

Table 2: SAP-IPS Interface Request -Example 2

Interface request 3: Sending SAP PM work orders

SAP -> IPS, using FTP as a middleware

Interface Request #	From (source system)	To (target system)	Data object	Туре	Technology	Description	
3	SAP ERP	FTP Server	Work Orders	Outbound	SAP ABAP	Custom ABAP development for collecting and exporting executed PM work order based on a predefined criteria, creating a CSV file and placing it on the predefined location on the ETP	
	FTP Server	IPS	Work Orders	Inbound	SGDI/IPS Web Services (OData WebAPIs)	SGDI trigger which is checking the FTP location, reading the CSV file, and calling the appropriate IPS OData API or SQL stored procedure	

Table 3: SAP-IPS Interface Request -Example 3

Interface request 4: Sending list of measurement documents

SAP -> IPS, using SAP PI/PO as an enterprise service bus

Interface Request #	From (source system)	To (target system)	Data object	Type	Technology	Description
4	SAP ERP	SAP PI/PO	Measurement documents	Outbound	SAP ABAP, PROXY, JDBC	Custom ABAP development for collecting end exporting SAP measurement documents and storing that into temporary IPS SQL staging tables
	SAP PI/PO	IPS	Measurement documents	Inbound	SGDI	SGDI trigger which calls SQL stored procedure and process the staging tables

Table 4: SAP-IPS Interface Request -Example 4

Notifications are synced bidirectional because some notifications are generated in SAP, and some in IPS.

Interface request 5: Sending SAP PM notifications

SAP -> IPS, using SAP PI/PO as an enterprise service bus

Interface Request #	From (source system)	To (target system)	Data object	Туре	Technology	Description
5	SAP ERP	SAP PI/PO	Notifications	Outbound	SAP ABAP, PROXY, JDBC	Custom ABAP development for collecting end exporting SAP PM notification and storing them into temporary IPS SQL staging tables
	SAP PI/PO	IPS	Notifications	Inbound	SGDI	SGDI trigger which calls SQL stored procedure and process the staging tables

Table 5: SAP-IPS Interface Request -Example 5

Interface request 6: Sending IPS notifications

IPS -> SAP, using SAP PI/PO as an enterprise service bus

Interface Request #	From (source system)	To (target system)	Data object	Type	Technology	Description
	IPS	SAP PI/PO	Notifications	Outbound	SGDI	SGDI trigger which calls export of IPS notification for health index and WO request for Oil Resample and calls SAP WS exposed through SAP PI/PO
6	SAP PI/PO	SAP ERP	Notifications	Inbound	SAP ABAP, PROXY, SOAP	SAP ABAP custom development for creating notifications in SAP, using standard SAP BAPI function calls, exposed on SAP PI/PO as a web service

Table 6: IPS-SAP Interface Request -Example 6

3.2 Historian - IPS example

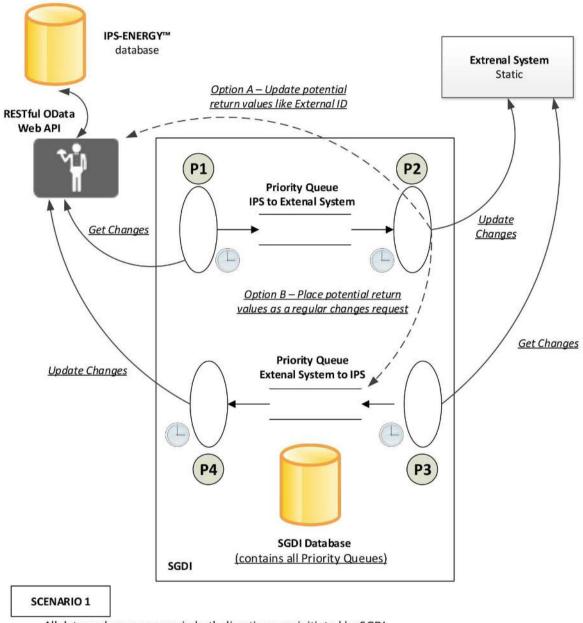
Interface Request #	From	То	Data object	Туре	Technology	Description	
7	Historian	IPS	TransformerLoad	Inbound	SGDI / OData WebAPI	Import of AVG, MIN, MAX transformer load per week	SGDI Trigger which reads directly from SQL View and stores in IPS db

Table 7: Historian-IPS Interface Request example

3.3 Oil Laboratory - IPS example

Interface Request #	From	То	Data object	Туре	Technology	Description	
8	Oil Laboratory	IPS	DGA	Inbound	SGDI / OData WebAPI	Import DGA analysis results	Web Service hosted for Oil laboratory stores received result in IPS database

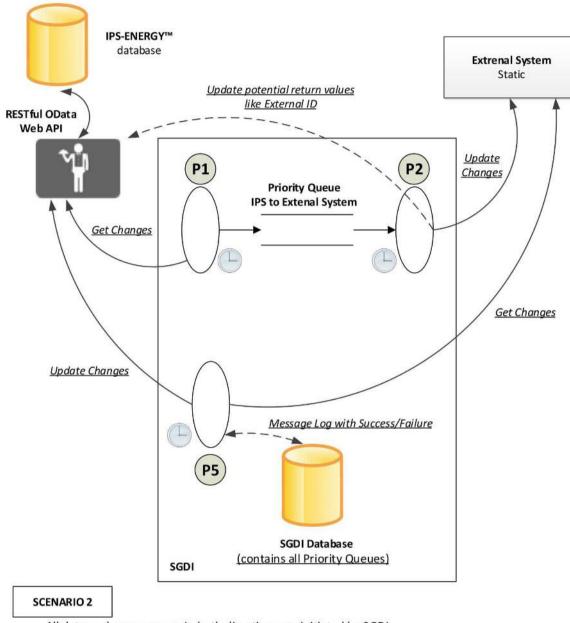
Table 8: Oil Laboratory -IPS Interface Request example


NOTE: Client is required to approve final list of interfaces before implementation.

Interfacing licenses are not including configuration services of the interfaces. Configuration services can be related to IPS®SYSTEMS Configuration OR to End-To-End Configuration services where IPS offers configuration of the third-party system as well.

IPS®WEB Service must be installed if any data exchange with IPS®SYSTEMS is required. IPS is always adopting interfacing technology related to requirements, performance and efficiency of implementation.

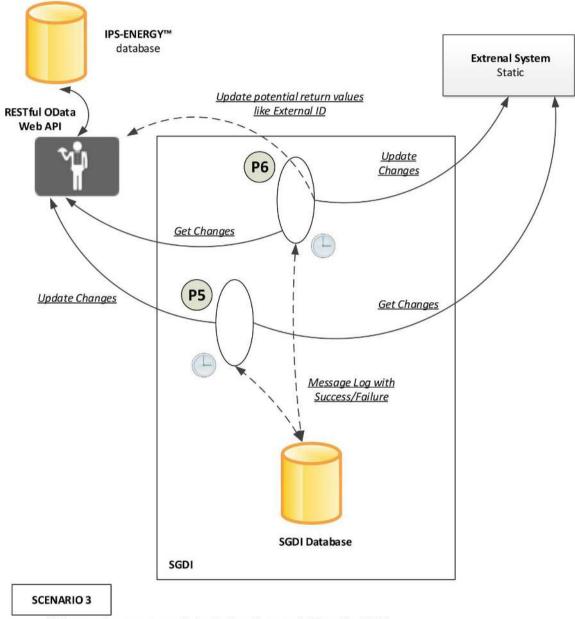
4 IPS®ENERGY System Integration - Scenarios



All data exchange process in both directions are initiated by SGDI

Note: The IPS-ENERGY RESTful OData Web API never initiates any exchange process

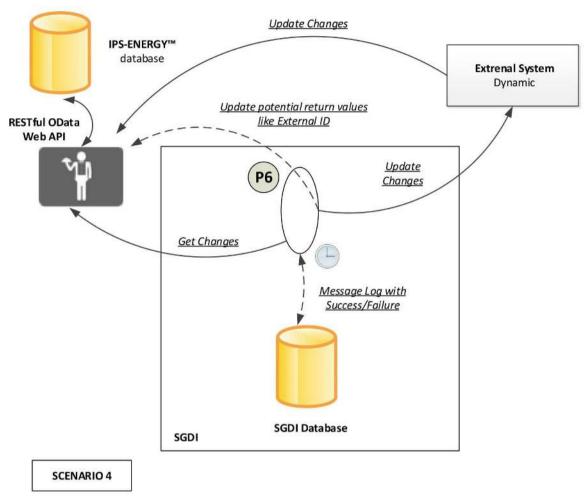
Figure 7: IPS®ENERGY System Integration - Scenario 1



All data exchange process in both directions are initiated by SGDI

Note: The IPS-ENERGY RESTful OData Web API never initiates any exchange process

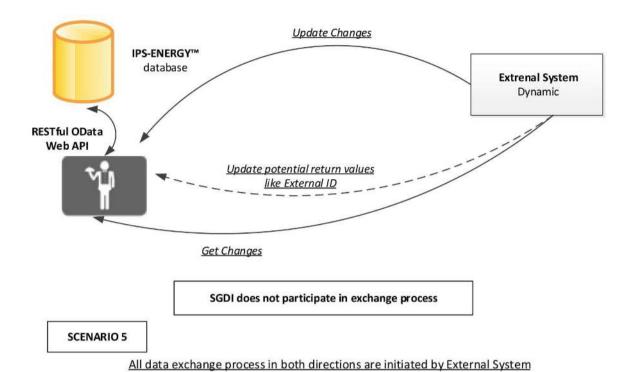
Figure 8: IPS®ENERGY System Integration - Scenario 2



All data exchange process in both directions are initiated by SGDI

Note: The IPS-ENERGY RESTful OData Web API never initiates any exchange process

Figure 9: IPS®ENERGY System Integration - Scenario 3


<u>Data exchange process from External system to IPS is initiated by External system and from IPS to External system is initiated by SGDI</u>

Note: The IPS-ENERGY RESTful OData Web API never initiates any exchange process

Figure 10: IPS®ENERGY System Integration - Scenario 4

© IPS-Company Group 17/18

Note: The IPS-ENERGY RESTful OData Web API never initiates any exchange process

Figure 11: IPS®ENERGY System Integration - Scenario 5

In general, the preferred option for IPS would be to set up a web service on the IPS side that some external service can call to store measurements in IPS. If for that external service, SQL database table (via ODBC, for example) is fitting better, or perhaps file base exchange instead of web service, IPS can provide it as well.

If it is expected that IPS pulls the data from any source, instead of waiting for data to be pushed into IPS, we can also do any options mentioned above that would fit. IPS can pull the data via Web Service, API (Rest or SOAP), or pull from any readable file (xml, xls, csv), or pull directly from some table (SQL, Oracle, Access).

© IPS-Company Group 18/18

List of Figures

Figure 1: IPS® SYSTEMS Solution Architecture	1
Figure 2: LINQPad	4
Figure 3: URL of the service endpoint	5
Figure 4: Generated code for ExecuteAllUnexecutedTasks	5
Figure 5: Mappings between the OData model and IPS®ENERGY Database	7
Figure 6: Three options for IR implementation	8
Figure 7: IPS®ENERGY System Integration - Scenario 1	14
Figure 8: IPS®ENERGY System Integration - Scenario 2	15
Figure 9: IPS®ENERGY System Integration - Scenario 3	16
Figure 10: IPS®ENERGY System Integration - Scenario 4	17
Figure 11: IPS®ENERGY System Integration - Scenario 5	18
List of Tables	
Table 1: SAP-IPS Interface Request -Example 1	
Table 2: SAP-IPS Interface Request -Example 2	10
Table 3: SAP-IPS Interface Request -Example 3	10
Table 4: SAP-IPS Interface Request -Example 4	11
Table 5: SAP-IPS Interface Request -Example 5	11
Table 6: SAP-IPS Interface Request -Example 6	12
Table 7: Historian-IPS Interface Request example	13
Table 8: Oil Laboratory -IPS Interface Request example	13

Appendix

Appendix A)

For information purposes, besides this document, the following information is also available:

- > IPS Interfacing with Web Services
-) IPS Enterprise Asset Management Integration with SAP on the following link:

IPS®EAM Integration with SAP ENU v1.3